A Unified Generalization of Two Results in Ordered Hypergraph Avoidance

نویسنده

  • MITCHEL T. KELLER
چکیده

The Füredi–Hajnal conjecture, originally posed in [6] and solved by Marcus and Tardos in [10], can be cast as an extremal problem on ordered graphs. It states that any n-vertex bipartite graph that avoids a fixed permutation graph has O(n) edges. Balogh, Bollobás and Morris [1] recently generalized this result to show that any n-vertex, ordered hypergraph that avoids a fixed permutation graph has O(n) edges. Independently, Klazar and Marcus [9] generalized the FürediHajnal conjecture in another direction. Extending the idea of a permutation graph to a d-permutation hypergraph, they showed that any n-vertex, d-uniform, d-partite, ordered hypergraph that avoids a fixed d-permutation hypergraph has O(nd−1) edges. This paper extends these two results into a single generalization. We adapt the techniques of [1], which are based upon the original FürediHajnal result, in order to use the generalized d-dimensional result of [9] as the base. Our main result implies a single generalization of all of the previously mentioned results: that any n-vertex, ordered hypergraph that avoids a fixed d-permutation hypergraph has O(nd−1) edges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Generalization of Interval Valued $left( in ,in vee q_{widetilde{k}}right) $-Fuzzy bi-Ideals in Ordered Semigroups

In this paper, we introduce a new sort of interval valued $left(in ,in vee q_{widetilde{k}}^{widetilde{delta }}right) $-fuzzy bi-ideal in ordered semigroups which is the generalization of interval valued $left( in ,in vee q_{%widetilde{k}}right) $-fuzzy bi-ideal and interval valued $left( in ,in vee qright) $-fuzzy bi-ideal of ordered semigroups. We give examples in which we show that these str...

متن کامل

Rational Geraghty Contractive Mappings and Fixed Point Theorems in Ordered $b_2$-metric Spaces

In 2014, Zead Mustafa introduced $b_2$-metric spaces, as a generalization of both $2$-metric and $b$-metric spaces. Then new fixed point results for the classes of  rational Geraghty contractive mappings of type I,II and III in the setup of $b_2$-metric spaces are investigated. Then, we prove some fixed point theorems under various contractive conditions in partially ordered $b_2$-metric spaces...

متن کامل

Generalized $F$-contractions in Partially Ordered Metric Spaces

We discuss about the generalized $F$-contraction mappings in partially ordered metric spaces. For this, we first introduce the notion of ordered weakly $F$-contraction mapping. We also present some fixed point results about this type of mapping in partially ordered metric spaces. Next, we introduce the notion of $acute{mathrm{C}}$iri$acute{mathrm{c}}$ type generalized ordered weakly $F$-contrac...

متن کامل

CATEGORY OF (POM)L-FUZZY GRAPHS AND HYPERGRAPHS

In this note by considering a complete lattice L, we define thenotion of an L-Fuzzy hyperrelation on a given non-empty set X. Then wedefine the concepts of (POM)L-Fuzzy graph, hypergraph and subhypergroupand obtain some related results. In particular we construct the categories ofthe above mentioned notions, and give a (full and faithful) functor form thecategory of (POM)L-Fuzzy subhypergroups ...

متن کامل

Fixed points of $(psi,varphi)_{Omega}$-contractive mappings in ordered p-metric spaces

In this paper, we introduce the notion of an extended metric space ($p$-metric space) as a new generalization of the concept of $b$-metric space. Also, we present the concept of $(psi ,varphi )_{Omega}$-contractive mappings and we establish some fixed point results for this class of mappings in ordered complete $p$-metric spaces. Our results generalize several well...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005